Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542436

RESUMO

In COVID-19, cytokine release syndrome can cause severe lung tissue damage leading to acute respiratory distress syndrome (ARDS). Here, we address the effects of IFNγ, TNFα, IL-1ß and IL-6 on the growth arrest of alveolar A549 cells, focusing on the role of the IFN regulatory factor 1 (IRF1) transcription factor. The efficacy of JAK1/2 inhibitor baricitinib has also been tested. A549 WT and IRF1 KO cells were exposed to cytokines for up to 72 h. Cell proliferation and death were evaluated with the resazurin assay, analysis of cell cycle and cycle-regulator proteins, LDH release and Annexin-V positivity; the induction of senescence and senescence-associated secretory phenotype (SASP) was evaluated through ß-galactosidase staining and the quantitation of secreted inflammatory mediators. While IL-1 and IL-6 proved ineffective, IFNγ plus TNFα caused a proliferative arrest in A549 WT cells with alterations in cell morphology, along with the acquisition of a secretory phenotype. These effects were STAT and IRF1-dependent since they were prevented by baricitinib and much less evident in IRF1 KO than in WT cells. In alveolar cells, STATs/IRF1 axis is required for cytokine-induced proliferative arrest and the induction of a secretory phenotype. Hence, baricitininb is a promising therapeutic strategy for the attenuation of senescence-associated inflammation.


Assuntos
Azetidinas , Citocinas , Purinas , Pirazóis , Sulfonamidas , Fator de Necrose Tumoral alfa , Células Epiteliais Alveolares/metabolismo , Senescência Celular , Citocinas/metabolismo , Interleucina-6/metabolismo , Fenótipo , Fator de Necrose Tumoral alfa/metabolismo , Células A549 , Humanos
2.
Biomedicines ; 11(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37893073

RESUMO

BACKGROUND: In COVID-19, an uncontrolled inflammatory response might worsen lung damage, leading to acute respiratory distress syndrome (ARDS). Recent evidence points to the induction of inducible nitric oxide synthase (NOS2/iNOS) as a component of inflammatory response since NOS2 is upregulated in critical COVID-19 patients. Here, we explore the mechanisms underlying the modulation of iNOS expression in human alveolar cells. METHODS: A549 WT and IRF1 KO cells were exposed to a conditioned medium of macrophages treated with SARS-CoV-2 spike S1. Additionally, the effect of IFNγ, IL-1ß, IL-6, and TNFα, either alone or combined, was addressed. iNOS expression was assessed with RT-qPCR and Western blot. The effect of baricitinib and CAPE, inhibitors of JAK/STAT and NF-kB, respectively, was also investigated. RESULTS: Treatment with a conditioned medium caused a marked induction of iNOS in A549 WT and a weak stimulation in IRF1 KO. IFNγ induced NOS2 and synergistically cooperated with IL-1ß and TNFα. The inhibitory pattern of baricitinb and CAPE indicates that cytokines activate both IRF1 and NF-κB through the JAK/STAT1 pathway. CONCLUSIONS: Cytokines secreted by S1-activated macrophages markedly induce iNOS, whose expression is suppressed by baricitinib. Our findings sustain the therapeutic efficacy of this drug in COVID-19 since, besides limiting the cytokine storm, it also prevents NOS2 induction.

3.
Vet Res Commun ; 47(4): 2285-2292, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37202645

RESUMO

Due to the importance of joint disease and ostearthritis (OA) in equine athletes, new regenerative treatments to improve articular cartilage repair after damage are gaining relevance. Chondrocyte de-differentiation, an important pathogenetic mechanism in OA, is a limiting factor when differentiated articular chondrocytes are used for cell-based therapies. Current research focuses on the prevention of this de-differentiation and/or on the re-differentiation of chondrocytes by employing different strategies in vitro and in vivo. Articular chondrocytes normally live in a condition of higher osmolarity (350-450 mOsm/L) compared to normal physiological fluids (~ 300 mOsm/L) and some studies have demonstrated that osmolarity has a chondroprotective effect in vitro and in vivo. Therefore, the response of horse articular chondrocytes to osmolarity changes (280, 380, and 480 mOsm/L) was studied both in proliferating, de-differentiated chondrocytes grown in adhesion, and in differentiated chondrocytes grown in a 3D culture system. To this aim, cell proliferation (cell counting), morphology (optical microscopy), and differentiation (gene expression of specific markers) were monitored along with the expression of osmolyte transporters involved in volume regulation [betaine-GABA transporter (BGT-1), taurine transporter (SLC6A6), and neutral amino acid transporter (SNAT)] real-time qPCR. Proliferating chondrocytes cultured under hyperosmolar conditions showed low proliferation, spheroidal morphology, a significant reduction of de-differentiation markers [collagen type I (Col1) and RUNX2] and an increase of differentiation markers [collagen type II (Col2) and aggrecan]. Notably, a persistently high level of BGT-1 gene expression was maintained in chondrocyte cultures at 380 mOsm/L, and particularly at 480 mOsm/L both in proliferating and differentiated chondrocytes. These preliminary data encourage the study of osmolarity as a microenvironmental co-factor to promote/maintain chondrocyte differentiation in both 2D and 3D in vitro culture systems.


Assuntos
Cartilagem Articular , Condrócitos , Humanos , Cavalos , Animais , Engenharia Tecidual/veterinária , Diferenciação Celular , Cartilagem Articular/metabolismo , Antígenos de Diferenciação/metabolismo , Concentração Osmolar , Proliferação de Células , Células Cultivadas
4.
Biomedicines ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551841

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by severe hypoxemia and high-permeability pulmonary edema. A hallmark of the disease is the presence of lung inflammation with features of diffuse alveolar damage. The molecular pathogenetic mechanisms of COVID-19-associated ARDS (CARDS), secondary to SARS-CoV-2 infection, are still not fully understood. Here, we investigate the effects of a cytokine-enriched conditioned medium from Spike S1-activated macrophage on alveolar epithelial A549 cells in terms of cell proliferation, induction of autophagy, and expression of genes related to protein degradation. The protective effect of baricitinib, employed as an inhibitor of JAK-STAT, has been also tested. The results obtained indicate that A549 exhibits profound changes in cell morphology associated to a proliferative arrest in the G0/G1 phase. Other alterations occur, such as a blockade of protein synthesis and the activation of autophagy, along with an increase of the intracellular amino acids content, which is likely ascribable to the activation of protein degradation. These changes correlate to the induction of IFN-regulatory factor 1 (IRF-1) due to an increased secretion of IFN-γ in the conditioned medium from S1-activated macrophages. The addition of baricitinib prevents the observed effects. In conclusion, our findings suggest that the IFN-γ-IRF-1 signaling pathway may play a role in the alveolar epithelial damage observed in COVID-19-related ARDS.

5.
Biomolecules ; 12(9)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139099

RESUMO

ATP-binding cassette (ABC) transporters are a large superfamily of membrane transporters that facilitate the translocation of different substrates. While ABC transporters are clearly expressed in various tumor cells where they can play a role in drug extrusion, the presence of these transporters in normal lung tissues is still controversial. Here, we performed an analysis of ABC transporters in EpiAlveolarTM, a recently developed model of human alveoli, by defining the expression and activity of MDR1, BCRP, and MRPs. Immortalized primary epithelial cells hAELVi (human alveolar epithelial lentivirus-immortalized cells) were employed for comparison. Our data underline a close homology between these two models, where none of the ABC transporters here studied are expressed on the apical membrane and only MRP1 is clearly detectable and functional at the basolateral side. According to these findings, we can conclude that other thus-far-unidentified transporter/s involved in drug efflux from alveolar epithelium deserve investigations.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Células Epiteliais Alveolares , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Células Epiteliais Alveolares/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Proteínas de Neoplasias/metabolismo
6.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140425

RESUMO

The purpose of this study was to examine the effect of the JAK-STAT inhibitor baricitinib on the inflammatory response of human monocyte-derived macrophages (MDM) and endothelial cells upon exposure to the spike S1 protein from SARS-CoV-2. The effect of the drug has been evaluated on the release of cytokines and chemokines from spike-treated MDM, as well as on the activation of endothelial cells (HUVECs) after exposure to conditioned medium collected from spike-activated MDM. Results obtained indicate that, in MDM, baricitinib prevents the S1-dependent phosphorylation of STAT1 and STAT3, along with the induction of IP-10- and MCP-1 secretion; the release of IL-6 and TNFα is also reduced, while all other mediators tested (IL-1ß, IL-8, RANTES, MIP-1α and MIP-1ß) are not modified. Baricitinib is, instead, poorly effective on endothelial activation when HUVECs are exposed to supernatants from S1-activated macrophages; the induction of VCAM-1, indeed, is not affected by the drug, while that of ICAM-1 is only poorly inhibited. The drug, however, also exerts protective effects on the endothelium by limiting the expression of pro-inflammatory mediators, specifically IL-6, RANTES and IP-10. No effect of baricitinib has been observed on IL-8 synthesis and, consistently, on neutrophils chemiotaxis. Our in vitro findings reveal that the efficacy of baricitinib is limited, with effects mainly focused on the inhibition of the IL-6-mediated inflammatory loop.

7.
Biomedicines ; 10(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327420

RESUMO

BACKGROUND: Clinical and experimental evidence point to a dysregulated immune response caused by SARS-CoV-2 as the primary mechanism of lung disease in COVID-19. However, the pathogenic mechanisms underlying COVID-19-associated ARDS (Acute Respiratory Distress Syndrome) remain incompletely understood. This study aims to explore the inflammatory responses of alveolar epithelial cells to either the spike S1 protein or to a mixture of cytokines secreted by S1-activated macrophages. METHODS AND RESULTS: The exposure of alveolar A549 cells to supernatants from spike-activated macrophages caused a further release of inflammatory mediators, with IL-8 reaching massive concentrations. The investigation of the molecular pathways indicated that NF-kB is involved in the transcription of IP-10 and RANTES, while STATs drive the expression of all the cytokines/chemokines tested, with the exception of IL-8 which is regulated by AP-1. Cytokines/chemokines produced by spike-activated macrophages are also likely responsible for the observed dysfunction of barrier integrity in Human Alveolar Epithelial Lentivirus-immortalized cells (hAELVi), as demonstrated by an increased permeability of the monolayers to mannitol, a marked decrease of TEER and a disorganization of claudin-7 distribution. CONCLUSION: Upon exposure to supernatants from S1-activated macrophages, A549 cells act both as targets and sources of cytokines/chemokines, suggesting that alveolar epithelium along with activated macrophages may orchestrate lung inflammation and contribute to alveolar injury, a hallmark of ARDS.

8.
Biomolecules ; 12(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35327581

RESUMO

Desmopressin (dDAVP) is the best characterized analogue of vasopressin, the endocrine regulator of water balance endowed with potent vasoconstrictive effects. Despite the use of dDAVP in clinical practice, ranging from the treatment of nephrogenic diabetes insipidus to bleeding disorders, much remains to be understood about the impact of the drug on endothelial phenotype. The aim of this study was, thus, to evaluate the effects of desmopressin on the viability and function of human pulmonary microvascular endothelial cells (HLMVECs). The results obtained demonstrate that the vasopressor had no cytotoxic effect on the endothelium; similarly, no sign of endothelial activation was induced by dDAVP, indicated by the lack of effect on the expression of inflammatory cytokines and adhesion molecules. Conversely, the drug significantly stimulated the production of nitric oxide (NO) and the expression of the inducible isoform of nitric oxide synthase, NOS2/iNOS. Since the intracellular level of cAMP also increased, we can hypothesize that NO release is consequent to the activation of the vasopressin receptor 2 (V2R)/guanylate cyclase (Gs)/cAMP axis. Given the multifaceted role of NOS2-deriving NO for many physio-pathological conditions, the meanings of these findings in HLMVECs appears intriguing and deserves to be further addressed.


Assuntos
Desamino Arginina Vasopressina , Óxido Nítrico , Desamino Arginina Vasopressina/metabolismo , Desamino Arginina Vasopressina/farmacologia , Células Endoteliais , Endotélio Vascular/metabolismo , Humanos , Pulmão/metabolismo , Óxido Nítrico/metabolismo
9.
Biomedicines ; 9(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572407

RESUMO

BACKGROUND: Emerging evidences suggest that in severe COVID-19, multi-organ failure is associated with a hyperinflammatory state (the so-called "cytokine storm") in combination with the development of a prothrombotic state. The central role of endothelial dysfunction in the pathogenesis of the disease is to date accepted, but the precise mechanisms underlying the associated coagulopathy remain unclear. Whether the alterations in vascular homeostasis directly depend upon the SARS-CoV-2 infection of endothelial cells or, rather, occur secondarily to the activation of the inflammatory response is still a matter of debate. Here, we address the effect of the SARS-CoV-2 spike S1 protein on the activation of human lung microvascular endothelial cells (HLMVEC). In particular, the existence of an endothelium-macrophage crosstalk in the response to the spike protein has been explored. METHODS AND RESULTS: The effect of the spike protein is addressed in human lung microvascular endothelial cells (HLMVEC), either directly or after incubation with a conditioned medium (CM) of human monocyte-derived macrophages (MDM) previously activated by the spike S1 protein (CM-MDM). Both MDM and HLMVEC are activated in response to the S1 protein, with an increased expression of pro-inflammatory mediators. However, when HLMVEC are exposed to CM-MDM, an enhanced cell activation occurs in terms of the expression of adhesion molecules, pro-coagulant markers, and chemokines. Under this experimental condition, ICAM-1 and VCAM-1, the chemokines CXCL8/IL-8, CCL2/MCP1, and CXCL10/IP-10 as well as the protein tissue factor (TF) are markedly induced. Instead, a decrease of thrombomodulin (THBD) is observed. CONCLUSION: Our data suggest that pro-inflammatory mediators released by spike-activated macrophages amplify the activation of endothelial cells, likely contributing to the impairment of vascular integrity and to the development of a pro-coagulative endothelium.

10.
Biochem Biophys Res Commun ; 576: 27-32, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34478916

RESUMO

Alveolar epithelium, besides exerting a key role in gas exchange and surfactant production, plays important functions in host defense and inflammation. Pathological conditions associated to alveolar dysfunction include Acute Respiratory Distress Syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The use of predictive in vitro models of human alveolar epithelium is nowadays required for the study of disease mechanisms, as well as of pharmacokinetic parameters of pulmonary drugs delivery. Here, we employed a novel 3D model of human alveoli, namely EpiAlveolar™, consisting of primary alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, that reflects properly the in vivo-like conditions. In EpiAlveolar™ we performed a characterization of Organic Cation Transporters (OCTs and OCTNs) expression and activity and we found that OCTN2, OCT1 and OCT3 are expressed on the basolateral membrane; instead, ATB0,+ transporter for cationic and neutral amino acids, which shares with OCTN2 the affinity for carnitine as substrate, is readily detectable and functional at the apical side. We also show that these transporters differentially interact with anticholinergic drugs. Overall, our findings reveal close similarities of EpiAlveolar™ with the tracheal/bronchial epithelium (EpiAirway™ model) and entrust this alveolar tissue as a potential tool for the screening of biopharmaceuticals molecules.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Técnicas de Cocultura , Humanos , Pulmão/metabolismo , Cultura Primária de Células
11.
Front Immunol ; 12: 641563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841424

RESUMO

At present, the central role played by arginine in the modulation of the inflammatory cellular responses is well-recognized, and many pro-inflammatory stimuli are known to modulate the expression and activity of its transmembrane transporters. In this regard, we have addressed the effects of bacterial flagellin from Pseudomonas aeruginosa (FLA-PA) on the uptake of the amino acid in human epithelial respiratory cells. Among the arginine transporters, only ATB0,+, y+L, and y+ were operative in bronchial epithelial Calu-3 cells under control conditions; however, only the expression and activity of ATB0,+ were stimulated upon incubation with flagellin, whereas those of systems y+L and y+ were not stimulated. As a result, this induction, in turn, led to an increase in the intracellular content of arginine without making any change to its metabolic pathway. In addition, flagellin upregulated the amount of other amino acids substrates of ATB0,+, in particular, all the essential amino acids, such as valine, isoleucine, and leucine, along with the non-essential glutamine. At the molecular level, these effects were directly referable to the stimulation of a toll-like receptor-5 (TLR5) signaling pathway and to the induction of nuclear factor-κB (NF-κB) transcription factor. An induction of ATB0,+ expression has been observed also in EpiAirway™, a model of primary human normal tracheal-bronchial epithelial cells that mimics the in vitro pseudostratified columnar epithelium of the airways. In this tissue model, the incubation with flagellin is associated with the upregulation of messenger RNAs (mRNAs) for the chemokine IL-8 and for the cytokines IL-6 and interleukin-1ß (IL-1ß); as for the latter, a marked secretion in the extracellular medium was also observed due to the concomitant activation of caspase-1. The overall findings indicate that, in human respiratory epithelium, flagellin promotes cellular responses associating the increase of intracellular amino acids through ATB0,+ with the activation of the inflammasome. Given the role of the ATB0,+ transporter as a delivery system for bronchodilators in human airway epithelial cells, its induction under inflammatory conditions gains particular relevance in the field of respiratory pharmacology.


Assuntos
Sistema ASC de Transporte de Aminoácidos/imunologia , Arginina/metabolismo , Flagelina/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoácidos Neutros/metabolismo , Antígenos de Bactérias/imunologia , Células Cultivadas , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Pseudomonas aeruginosa
12.
Toxicol Lett ; 340: 15-22, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421552

RESUMO

Alternariol is a mycotoxin produced by Alternaria spp. relevant to the food safety area due to its abundance in certain foods. The shortage of data on its toxicology, also as a part of chemical mixtures, prevents setting regulation to limit its abundance in food. To extend knowledge on the possible mechanisms underpinning alternariol toxicology in chemical mixtures, this work assessed the effects of urolithin C, a structurally related gut ellagitannin-derived metabolite, on its absorption and phase II metabolism in a monolayer of Caco-2 cells. A computational study was also used to provide a mechanistic explanation for the results obtained. Urolithin C influenced transport and phase II metabolism of alternariol with a late reduction of transport to the basolateral compartment. Moreover, it caused an early effect in terms of accumulation of alternariol glucuronides in the basolateral compartment, followed by a late reduction of glucuronides in both compartments. Concerning alternariol sulfates, the data collected pointed to a possible competition of urolithin C for the sulfotransferases resulting in a reduced production of alternariol sulfates. Our results provide a compelling line-of-evidence pointing to the need to systematically tackle the evaluation of mycotoxin toxicity in the context of chemical mixture.


Assuntos
Taninos Hidrolisáveis/metabolismo , Lactonas/metabolismo , Arilsulfotransferase/metabolismo , Transporte Biológico , Células CACO-2 , Sobrevivência Celular , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica
13.
Sci Rep ; 10(1): 12238, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699266

RESUMO

Crohn's disease (CD) is a chronic inflammatory disorder characterized by immune response dysregulation. Tumor necrosis factor-α (TNFα) is a key cytokine in the pathogenesis of CD, as indicated by the efficacy of anti-TNF-α therapy with infliximab (IFX). However, approximately 30-40% of CD patients fail to respond to IFX with still unclear underlying mechanisms. This study compares the inflammatory phenotype of monocytes from CD patients, who respond or non-respond to IFX. Under basal conditions, the mRNA for the cytokines TNFα, IL-23, IL-1ß and the chemokines CXCL8/IL-8, CCL5/RANTES and CCL2/MCP-1 was up-regulated in monocytes from non-responders than responders. The expression of the same cytokines and CCL2/MCP-1 was higher in non-responders also upon LPS treatment. Moreover, higher secretion of TNFα, IL-1ß, IFNγ and IL-2 proteins occurred in the supernatants of LPS-treated non-responders cells. Resistance to IFX in CD may result from a transcriptional dysregulation of circulating monocytes, leading to hyperactivation of pro-inflammatory pathways. Monocytes' cytokine profile may thus represent a predictive marker of response to IFX. Monocytes were isolated from blood samples of 19 CD patients (11 responders, 8 non-responders) and incubated with or without LPS. Cytokine profiles were assessed by RT-qPCR and, in the supernatants, by ELISA assay.


Assuntos
Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Citocinas/metabolismo , Infliximab/uso terapêutico , Monócitos/metabolismo , Adulto , Idoso , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/fisiologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia , Adulto Jovem
14.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366035

RESUMO

The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.


Assuntos
Brônquios/metabolismo , Epitélio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Biomedicines ; 8(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438722

RESUMO

Organic cation transporters (OCTs) and novel organic cation transporters (OCTNs) are responsible for drug delivery in the intestine and kidney; in the lung, OCTs mediate inhaled drugs' transport, although their physiological role in airways remains poorly understood. The studies addressing OCTs/OCTNs in human airways were mostly performed in immortal or transformed cell lines; here, we studied OCTs in EpiAirway™, a recently developed in vitro model of normal bronchial epithelium. Calu-3 monolayers were used for comparison. The activity of OCTs was evaluated by measuring the uptake of 1-methyl-4-phenylpyridinium (MPP+) at the apical and basolateral side of monolayers and protein expression through Western Blot analysis. OCTs and OCTNs expression, along with that of Amino acid Transporter B0,+ (ATB0,+)transporter, was determined by measuring the number of mRNA molecules through quantitative Polymerase Chain Reaction (qPCR). The interaction of the transporters with bronchodilators was also assessed. Results highlight significant differences between Calu-3 cells and EpiAirway™, since, in the latter, OCTs are active only on the basolateral membrane where they interact with the bronchodilator ipratropium. No activity of OCTs is detectable at the apical side; there, the most abundant carrier is, instead, SLC6A14/ATB0,+, that can thus be potentially listed among organic cation transporters responsible for drug delivery in the lung.

17.
PLoS One ; 15(2): e0228568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027707

RESUMO

In human, OCTN2 (SLC22A5) and ATB0,+ (SLC6A14) transporters mediate the uptake of L-carnitine, essential for the transport of fatty acids into mitochondria and the subsequent degradation by ß-oxidation. Aim of the present study was to characterize L-carnitine transport in EpiAirway™, a 3D organotypic in vitro model of primary human tracheal-bronchial epithelial cells that form a fully differentiated, pseudostratified columnar epithelium at air-liquid interface (ALI) condition. In parallel, Calu-3 monolayers grown at ALI for different times (8d or 21d of culture) were used as comparison. OCTN2 transporter was equally expressed in both models and functional at the basolateral side. ATB0,+ was, instead, highly expressed and active on the apical membrane of EpiAirway™ and only in early-cultures of Calu-3 (8d but not 21d ALI). In both cell models, L-carnitine uptake on the apical side was significantly inhibited by the bronchodilators glycopyrrolate and tiotropium, that hence can be considered substrates of ATB0,+; ipratropium was instead effective on the basolateral side, indicating its interaction with OCTN2. Inflammatory stimuli, such as LPS or TNFα, caused an induction of SLC6A14/ATB0,+ expression in Calu-3 cells, along with a 2-fold increase of L-carnitine uptake only at the apical side; on the contrary SLC22A5/OCTN2 was not affected. As both OCTN2 and ATB0,+, beyond transporting L-carnitine, have a significant potential as delivery systems for drugs, the identification of these transporters in EpiAirway™ can open new fields of investigation in the study of drug inhalation and pulmonary delivery.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Carnitina/metabolismo , Células Epiteliais/química , Sistema Respiratório/citologia , Membro 5 da Família 22 de Carreadores de Soluto/fisiologia , Sistema ASC de Transporte de Aminoácidos/análise , Transporte Biológico/efeitos dos fármacos , Broncodilatadores/farmacologia , Técnicas de Cultura de Células/métodos , Polaridade Celular , Glicopirrolato/farmacologia , Humanos , Membro 5 da Família 22 de Carreadores de Soluto/análise , Brometo de Tiotrópio/farmacologia
18.
J Cell Mol Med ; 24(1): 921-929, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705628

RESUMO

y+LAT1 (encoded by SLC7A7), together with y+LAT2 (encoded by SLC7A6), is the alternative light subunits composing the heterodimeric transport system y+L for cationic and neutral amino acids. SLC7A7 mutations cause lysinuric protein intolerance (LPI), an inherited multisystem disease characterized by low plasma levels of arginine and lysine, protein-rich food intolerance, failure to thrive, hepatosplenomegaly, osteoporosis, lung involvement, kidney failure, haematologic and immunological disorders. The reason for the heterogeneity of LPI symptoms is thus far only poorly understood. Here, we aimed to quantitatively compare the expression of SLC7A7 and SLC7A6 among different human cell types and evaluate y+LAT1 and y+LAT2 contribution to arginine transport. We demonstrate that system y+L-mediated arginine transport is mainly accounted for by y+LAT1 in monocyte-derived macrophages (MDM) and y+LAT2 in fibroblasts. The kinetic analysis of arginine transport indicates that y+LAT1 and y+LAT2 share a comparable affinity for the substrate. Differences have been highlighted in the expression of SLC7A6 and SLC7A7 mRNA among different cell models: while SLC7A6 is almost equally expressed, SLC7A7 is particularly abundant in MDM, intestinal Caco-2 cells and human renal proximal tubular epithelial cells (HRPTEpC). The characterization of arginine uptake demonstrates that system y+L is operative in renal cells and in Caco-2 where, at the basolateral side, it mediates arginine efflux in exchange with leucine plus sodium. These findings explain the defective absorption/reabsorption of arginine in LPI. Moreover, y+LAT1 is the prevailing transporter in MDM sustaining a pivotal role in the pathogenesis of immunological complications associated with the disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Sistema y+L de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Fibroblastos/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Transporte Biológico , Células CACO-2 , Humanos , Lisina/metabolismo , Mutação , Sódio/metabolismo
19.
Orphanet J Rare Dis ; 14(1): 63, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832686

RESUMO

BACKGROUND: y+LAT1, encoded by SCL7A7, is the protein mutated in Lysinuric Protein Intolerance (LPI), a rare metabolic disease caused by a defective cationic amino acid (CAA, arginine, lysine, ornithine) transport at the basolateral membrane of intestinal and renal tubular cells. The disease is characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous with lung and immunological complications that are not explainable by the CAA transport defect. With the exception of the Finnish founder mutation (c.895-2A > T, LPIFin), LPI-causative mutations are heterogeneous and genotype-phenotype correlations have not been found. Here we addressed system y+L-mediated arginine uptake in monocytes from three LPI Italian patients and in lymphoblasts carrying the same mutations; in parallel, the genetic defects carried by the patients were reproduced as eGFP-tagged y+LAT1 mutants in transfected CHO cells to define the function and localization protein. RESULTS: System y+L activity is impaired in monocytes isolated from all LPI patients, and in CHO cells transfected with the three eGFP-y+LAT1 mutants, but not in lymphoblasts bearing the same mutations. The analysis of protein localization with confocal microscopy revealed that the eGFP-tagged mutants were retained inside the cytosol, with a pattern of expression quite heterogeneous among the mutants. CONCLUSIONS: The three mutations studied of y+LAT1 transporter result in a defective arginine transport both in ex vivo (monocytes) and in vitro (CHO transfected cells) models, likely caused by the retention of the mutated proteins in the cytosol. The different effect of y+LAT1 mutation on arginine transport in monocytes and lymphoblasts is supposed to be due to the different expression of SLC7A7 mRNA in the two models, supporting the hypothesis that the impact of LPI defect largely depends on the relative abundance of LPI target gene in each cell type.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Mutação , Transporte Proteico/genética , Adulto , Sistema y+L de Transporte de Aminoácidos , Animais , Arginina/metabolismo , Células CHO , Células Cultivadas , Criança , Pré-Escolar , Cricetulus , Citosol/metabolismo , Feminino , Humanos , Masculino , Monócitos
20.
Front Immunol ; 9: 508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616026

RESUMO

Lysinuric protein intolerance (LPI) is a recessively inherited aminoaciduria caused by mutations of SLC7A7, the gene encoding y+LAT1 light chain of system y+L for cationic amino acid transport. The pathogenesis of LPI is still unknown. In this study, we have utilized a gene silencing approach in macrophages and airway epithelial cells to investigate whether complications affecting lung and immune system are directly ascribable to the lack of SLC7A7 or, rather, mediated by an abnormal accumulation of arginine in mutated cells. When SLC7A7/y+LAT1 was silenced in human THP-1 macrophages and A549 airway epithelial cells by means of short interference RNA (siRNA), a significant induction of the expression and release of the inflammatory mediators IL1ß and TNFα was observed, no matter the intracellular arginine availability. This effect was mainly regulated at transcriptional level through the activation of NFκB signaling pathway. Moreover, since respiratory epithelial cells are the important sources of chemokines in response to pro-inflammatory stimuli, the effect of IL1ß has been addressed on SLC7A7 silenced A549 cells. Results obtained indicated that the downregulation of SLC7A7/y+LAT1 markedly strengthened the stimulatory effect of the cytokine on CCL5/RANTES expression and release without affecting the levels of CXCL8/IL8. Consistently, also the conditioned medium of silenced THP-1 macrophages activated airway epithelial cells in terms of CCL5/RANTES expression due to the presence of elevated amount of proinflammatory cytokines. In conclusion, our results point to a novel thus far unknown function of SLC7A7/y+LAT1, that, under physiological conditions, besides transporting arginine, may act as a brake to restrain inflammation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Cadeias Leves da Proteína-1 Reguladora de Fusão/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Aminoacidúrias Renais/imunologia , Mucosa Respiratória/imunologia , Células A549 , Erros Inatos do Metabolismo dos Aminoácidos/genética , Sistema y+L de Transporte de Aminoácidos , Quimiocina CCL5/metabolismo , Cadeias Leves da Proteína-1 Reguladora de Fusão/genética , Inativação Gênica , Humanos , Inflamação/genética , Interleucina-1beta/metabolismo , Mutação/genética , NF-kappa B/metabolismo , Fenótipo , RNA Interferente Pequeno/genética , Aminoacidúrias Renais/genética , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...